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I find Bob’s recent notes on the construction of subsentential syntactical
structure out of base consequence relations among sets of sentences very
attractive. A thoroughgoing use-theoretic inferentialism needs a way to
make sense of subsentential structure in terms of the norms that govern
the uses of sentences in inferences.

I want to explore a similar but distinct strategy for doing this. The
main reason for this is that I worry that the idea that two sentences share a
predicate iff they can be substituted salva consequentia isn’t want we want.
This is for two reasons:

1. Two sentences are everywhere substitutable salva consequentia in an
implication-space model iff they have the same RSR in that model iff
they express the same content in that model. So what we get from
this is the idea of synonymous sentences, and I doubt that this idea
is rich enough for what we want.

2. The sentences that share a predicate might be synonymous if the
singular terms in them are coreferential, which would be ensured by
an identity statement. But I am not sure that I understand how the
ideas can be used to make sense of when sentences share predicates
or singular terms when no identity statements are assumed.

Probably I am just missing something in Bob’s construction. In any event,
it motivated me to think a bit about the matter myself. Here are some
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initial ideas. It is all very rough; and Bob’s note is more important for
tomorrow. But I thought I

1 Basic Ideas

We must use some information in our material base. Suppose for
simplicity that the possible syntactic structures that we want to recover are
predicate-name(s) structures (no variables, etc.). If we let predicates and
names carry information about inferential goodness separately, I don’t see
how this could possibly work. To see this, attribute any syntactic structure
you like to the sentences of a material base, and then ask yourself whether
you have any reason to think that this is not the “real” syntactic structure.
I cannot see what reason you could possible have for a negative answer to
that question. The space of possibilities seems completely unconstrained
to me.

One solution that I am willing to consider is this: Stipulate that
identities of individuals don’t matter for inferential goodness. I take this
to be something similar to what Wittgenstein means in the TLP when he
says that objects are colorless.

Assumption 1. Objects are colorless: If Γ ∼ ∆ and Γ′ and ∆′ are results of
bijections of the singular terms of the language to themselves (so permutations of
the names of the language), then Γ′ ∼ ∆′.

If we could now find ways in which we could map the sentences of our
language onto themselves in such a way that the consequence relation is
preserved, we could say that this mapping is, in effect, a permutation of
the names of the language.

Definition 2. n-folding: An n-folding of a material base, Fn(B), is an
collection of n − 1 nontrivial automorphisms (preserving consequence as
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the only relevant structure) of the sentences of the language, L,1 of the base
such that Auti

L ∈ Fn(B) iff (i) Γ ∼ ∆ ∈ B iff Auti
L(Γ) ∼ Auti

L(∆) ∈ B

and (ii) if Auti
L ∈ Fn(B) and Autj

L ∈ Fn(B) and Auti
L(A) = B and

Autj
L(A) = C, then ∃Autk

L ∈ Fn(B) such that Autk
L(B) = C.

The idea here is that there are symmetries in our base, i.e., we
can “rotate” or “fold” our base in several ways that yield a result
that is indistinguishable from the original base. The sentences that are
mapped onto each other by such “rotations” or “foldings” are substitution
instances of the same schema of an atomic sentence, i.e., substitution
instances of the same predicate.

The second condition is there to ensure that we get classes of sentences
such that all automorphisms in an n-folding map sentences in a particular
class always only to other sentences in that same class. The idea is
that these classes are sentences that share their predicate, i.e., they are
substitution variants of each other.

Definition 3. Substitution variants: Sentences A and B in L are substitution
variants of each other under n-folding, Fn(B), iff ∃Auti

L ∈ Fn(B) such that
Auti

L(A) = B.

Notice that our n-foldings never map two atomic sentences to the same
atomic sentence. For, automorphism are isomorphisms and hence (one-
to-one and onto). So, if we think of n-foldings as—behind the curtain of
the subsentential structure really being—permutations of singular terms,
then they never map two singular terms to the same singular term (if we
think we already see the underlying structure). For that would lead to two
sentences being mapped to the same sentence (e.g. if a and b and mapped
to c, then Ga and Gb and both mapped to Gc). So, identity of objects is
encoded by identity of terms (at this fundamental level).

1Notice that the base isn’t strictly speaking sufficient to determine the language
because there might be sentences that figure only in bad inferences. So, we really need to
either specify the language independently, or include the complement of the base at the
bottom of our construction.
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Notice also automorphisms can be composed, and there can be basis of
a set of automorphisms in the following sense:

Definition 4. Basis of n-folding: The set {Aut1
L, ..., Autj

L} is a basis of an n-
folding Fn(B) iff {Aut1

L, ..., Autj
L} ⊆ Fn(B) and, for every Auti

L ∈ Fn(B),
there is a sequence of a subset of {Aut1

L, ..., Autj
L} such that Auti

L is the
same as applying the sequence of automorphisms in the subset (in that
order).

To see why the notion of a basis might come in handy, notice that you
can produce all permutations of singular terms of a language by chaining
together swaps of just two singular terms. So swaps of just two singular
terms form a basis for all permutations of singular terms. Since we will
think of our automorphisms as permutations of singular terms, we should
expect there to be at least one basis that corresponds to swaps of two
singular terms.

Summar: The basic ideas then are the following.

• Subsentential structure is always relative to an n-folding, which is a
symmetry in the base. Since there might be many symmetries in a
base, there might be many equally correct but incompatible analyses
of the subsentential structure of the sentences of a base.

• Relative to an n-folding of a base, predicates are what is shared by
sentences that are substitution variants of each other.

• What differs between substitution variants of two sentences is what
singular terms occur in what order in them. (However, since we just
keep track of how many variants we can create, the identity of the
terms doesn’t matter.)

• Put differently, permutations of singular terms are axes of symmetry
of the base consequence relation.
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• Predicates are the classes of points mapped onto each other by these
symmetries.

• Attributing to a language subsentential structure is a kind of
“dimension-reduction” procedure for base consequence relations.
If you know how any substitution instances are related by
consequence, then you know how any of the other substitution
instances of the same set of sentences are related. This is a way to
compress information about the base consequence relation. And
what allows one to do this is the symmetry. One folds the base
up into a smaller part and an instruction for expanding it; where
the instruction for expanding it is the subsentential structure of the
sentences.

2 Syntactic Hypotheses

For our language, we need it to be the case that it can be generated by
our subsentential syntax. That is, there must be a bijection between L

and the candidate subsentential syntax that we propose. If, e.g., we say
that our language as singular terms a, b, c and on-term predicate F and
relational predicate G, then we need to have in L exactly one sentence for
Fa, Fb, Fc, Gaa, Gab, Gac, Gba, Gbb, Gbc, Gca, Gcb, Gcc.

• Call such a mapping a “syntactic hypothesis” for a base.

• Notice that syntactic hypotheses might get complicated if we
allowed for more complex typing, functors, etc.

• I am using the simplest kind of syntactic hypotheses because I think I
have some idea for how to get (permutations of) singular terms and
predicates out of symmetries of base consequence relations. If we
wanted to entertain more complex syntactic hypotheses, we would
need a more complex story.
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• This means that my approach lacks one feature that Bob claims for
his, namely the selectivity of predicates. My predicates and singular
terms are promiscuous; they combine freely and every combination
is a syntactically correct sentence.

3 Questions that n-Foldings Should Answer

It is not clear to me that the definition of n-foldings above is really what
we want. Moreover, n-foldings must have more structure that allow us
to recover more detailed information about the subsentential structure of
our sentences. In particular, we would want our n-foldings to answer the
following questions:

1. How (if at all) is the arity of a predicate that is shared by the
substitution variants in a class determined?

2. Can we determine which sentences share occurrences of singular
terms?

3. What corresponds to the order in which singular terms occur in a
sentence?

4. What do atomic sentences without singular terms (like feature-
placing sentences) look like?

5. Are their n-foldings that do not support any subsentential analysis
of their sentences? That is, is there any n-folding that cannot be
explained by any syntactic hypothesis? And, more generally: must
we require more than what is in Definition 2 above in order to ensure
that we have a structure that delivers answers to the questions just
stated?

6. What does it take for an n-folding to answer the questions 1-4 above
in a unique way?

6

rbran
Highlight



7. How is the number of foldings related to the number of singular
terms? What about infinite base languages with n-foldings where
the n is some infinite cardinality?

I guess that the ideas in the previous sections must be revised in order to
yield good answers to these questions. But I am optimistic that this is, in
principle, possible.

In order to get a feeling for the lay of the land, let’s try to reverse
engineer this. So let’s try to start with a standard first-order, atomic
language, without identity, or functors. We can then see what kind of
n-foldings these generate.

4 Example One: Going in the Other Direction

I will take some ridiculously simply languages, and see what natural n-
foldings they yield. So here is one:

• Predicates:

– 0-place: p, q

– 1-place: G, H

– 2-place: R

• Singular terms: a, b, c,

• Schematic base: all CO-instances, and all instances of:

1. G(α), R(α, β) ∼ H(β)

2. R(α, β) ∼ R(β, α), q

3. p, H(α) ∼ G(α)

Given that we have three singular terms, there are six permutations of
these terms. And we expect all of them to be axis of symmetry of our base.
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That is, they are all automorphisms in an n-folding of our base. This is
what we get from the fact that objects are colorless. We get, for instance,
all the substitution instances of 1:

• G(a), R(a, b) ∼ H(b); G(a), R(a, c) ∼ H(c); G(b), R(b, a) ∼ H(a);
G(b), R(b, c) ∼ H(c); G(c), R(c, a) ∼ H(a); G(c), R(c, b) ∼ H(b);
G(a), R(a, a) ∼ H(a); G(b), R(b, b) ∼ H(b); G(c), R(c, c) ∼ H(c).

The identity mapping of the singular terms to themselves yield these same
instances of 1. The other permutations of singular terms yield always the
same instances, just in different orders:

• (abc) 7→ (acb):
G(a), R(a, c) ∼ H(c); G(a), R(a, b) ∼ H(b); G(c), R(c, a) ∼ H(a);
G(c), R(c, b) ∼ H(b); G(b), R(b, a) ∼ H(a); G(b), R(b, c) ∼ H(c);
G(a), R(a, a) ∼ H(a); G(c), R(c, c) ∼ H(c); G(b), R(b, b) ∼ H(b).

• (abc) 7→ (bac)
G(b), R(b, a) ∼ H(a); G(b), R(b, c) ∼ H(c); G(a), R(a, b) ∼ H(b);
G(a), R(a, c) ∼ H(c); G(c), R(c, b) ∼ H(b); G(c), R(c, a) ∼ H(a);
G(b), R(b, b) ∼ H(b); G(a), R(a, a) ∼ H(a); G(c), R(c, c) ∼ H(c).

• (abc) 7→ (bca)
G(b), R(b, c) ∼ H(c); G(b), R(b, a) ∼ H(a); G(c), R(c, b) ∼ H(b);
G(c), R(c, a) ∼ H(a); G(a), R(a, b) ∼ H(b); G(a), R(a, c) ∼ H(c);
G(b), R(b, b) ∼ H(b); G(c), R(c, c) ∼ H(c); G(a), R(a, a) ∼ H(a).

• (abc) 7→ (cab)
...

• (abc) 7→ (cba)
...

It is obvious that the same thing happens with the instances of 2 and 3
and the instances of CO. So, the six permutations of our three singular
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terms give us a 6-folding of our base relation. For, these mappings are
automorphisms on the language preserving the consequence relation, i.e.,
good implications are mapped to good implications and bad implications
are mapped to bad implications. And because we get basically a “kind
of” Cartesian product of the permutation instances in each base and
the permutations of the base, these automorphisms satisfy the second
condition. E.g., (abc) 7→ (bac) maps R(a, b) to R(b, a); and (abc) 7→ (bca)
maps R(a, b) to R(b, c). So, our second condition requires that one of our
automorphisms maps R(b, a) to R(b, c). And, of course, (abc) 7→ (cba)
does that.

Obviously, the automorphisms in our 6-folding always map substitu-
tion instances of sentences to each other. So we get five classes of sentences
that are mapped each other (which each class), namely from of each of:
p, q, G(· ), H(· ), R(· , · ).

So far so good, but we would like to be able to recover more details
information from our 6-folding.

5 Towards Some Answers

• Ad 1 above: Is there a way to tell from the 6-folding of what
arity the sentences in our classes of substitution items are? Some
observations:

– All permutations of singular terms map p and q to themselves,
while all other sentences are mapped to a different sentence by
at least one permutation. And it seems to be generally true
that sentences of 0-arity are all any only those sentences that are
mapped to themselves by every automorphism in an n-folding.

– For unary predicates, there are three pairs of permutations
such that in every class of substitution variants for binary
predicates, there are exactly two sentences that are mapped
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to each other by the two permutations in these pairs, while
the automorphism maps all other sentences in the class to
themselves. In general: For an n-folding, such that n = k!,
there are k(k − 1) pairs of automorphisms in the n-folding such
that for every class of substitution variants for unary predicates,
there are exactly two sentences that are mapped to each other by
the two automorphisms in these pairs and all other sentences in
the class of substitution variants are mapped to themselves. I
hypothesize that this is not only necessary but also a sufficient
criterion for a sentence to be a binary predicate followed by two
singular terms.

– In fact, there is something more general to notice here. For
every class of substitution variants that is generated by a unary
predicate, the set of all automorphisms that swap just two
singular terms are a basis of our n-folding. And we can find
this basis merely by looking at our symmetries. To find it, we
must find an automorphism and its inverse for every pair in our
substitution class such that this pair of automorphisms swaps
just two sentences in the class and maps all other sentences in
the class to themselves. And the set of these automorphisms for
every pair in the class must be a basis of our n-folding.

– Moreover, we should find the same basis of our n-folding for
every class of substitution variants that correspond to a uniary
predicate. I am not sure what we should say if different classes
that look like they are classes of unary predicates yield different
basis automorphisms.

– Note also that we know the cardinality of classes of substitution
variants of uniary predicates. It is the cardinality of our singular
terms, and this is k for an n-folding such that n = k!.

– For binary predicates, we expect classes of subtitution variants
of cardinality k2 for an n-folding such that n = k!.
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– To see why a basis like that cannot be found in substitution
classes of binary predicates, consider what pattern swaps of
singular terms lead to in such classes. Consider a sequence
of three binary swaps: (abc) 7→ (bac) 7→ (cab) 7→ (acb);
which gets us back to where we started when we repeat it:
(acb) 7→ (bca) 7→ (cba) 7→ (abc). And the pattern this produces
in uniary predicates is this:

* First round:

*
F(a)

F(c) F(b) 7→
F(b)

F(c) F(a) 7→
F(c)

F(b) F(a) 7→
F(a)

F(b) F(c)

* Second round:

*
F(a)

F(b) F(c) 7→
F(b)

F(a) F(c) 7→
F(c)

F(a) F(b) 7→
F(a)

F(c) F(b)

* And no other sentences in the class are affected (they are all
mapped to themselves)

* Call this the “triple swap dance of unary predicates”.

– Now take the class for R(· , · ), and take again our sequence
of three swaps. The first thing to notice is that a much larger
number of sentences in the class are affected by each swap,
namely 4k − 4 many each time.

– For d ̸= a, b, c, we will find that R(d, a), R(d, b), R(d, c), R(a, d),
R(b, d), R(c, d) will do just do the triple swap dance of unary
predicates when you perform two rounds of binary swaps from
above again. The same goes for the instances with double
occurrences of a, b, c.

– However, if you do the two rounds of binary swaps from
above again, you will find that a different pattern emerges for
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sentences in which both arguments are one of a, b, c.
R(a, b) R(a, c) R(b, a) R(b, c) R(c, a) R(c, b)

a ↔ b R(b, a) R(b, c) R(a, b) R(a, c) R(c, b) R(c, a)
b ↔ c R(c, a) R(c, b) R(a, c) R(a, b) R(b, c) R(b, a)
c ↔ a R(a, c) R(a, b) R(c, a) R(c, b) R(b, a) R(b, c)
a ↔ b R(b, c) R(b, a) R(c, b) R(c, a) R(a, b) R(a, c)
b ↔ c R(c, b) R(c, a) R(b, c) R(b, a) R(a, c) R(a, b)
c ↔ a R(a, b) R(a, c) R(b, a) R(b, c) R(c, a) R(c, b)

– Here there are six sentences that are mapped always to one
another. Our two rounds of binary-swaps make them dance
around in a circle once. Of course, that much is also true of our
unary sentences. But for the unary sentences it is always groups
of three that dance around in a circle, while here every sentence
dances to the spot of all of the five other sentences.

– Call this the “triple swap dance of binary predicates /
relations”.

– Result: In classes of substitution variants that correspond to
relational predicates, when we take three automorphisms that
are in a basis of our n-folding, as discovered by looking at unary
predicates, and do two rounds of these automorphisms that get
us back to the starting point, then we always find exactly one
group of six sentences that perform the triple swap dance of
binary predicates, while all other sentences perform the triple
swap dance of unary predicates.

– It seems to me that there is a characteristic cardinality and a
characteristic swap dance for each arity of predicates. If that is
true, then we can identify the arity of our predicates by looking
at the movements of sentences when we do some series of basis
automorphisms.
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• Ad 2 above: Can we determine which sentences share occurrences
of singular terms?

– Sentences that are always mapped to themselves by every
automorphism in an n-folding don’t contain singular terms. So
they cannot share any singular terms with any other sentence.

– All other sentence share are least one of two singular terms
iff they are not mapped onto themselves by the same basis
automorphism, as determined by the class of unary predicates.

– To see this, recall that basis automorphisms are swaps of single
pairs of singular terms.

– We can define a singular term as what is shared by sentences
such that there is exactly one such sentence in every class of
unary predicates and these sentences in their respective classes
are that all and only not mapped to themselves by the same set
of basis automorphisms. E.g., the swaps (a, b) and (a, c) and
(a, d) etc. is the set of automorphisms such that for every unary
predicate Fi(· ), they map Fi(a) to something other than itself.

– So let a singular term be the intersection of the nontrivial parts
of the domains (i.e. the one’s that are not the identity mapping)
of two basis automorphisms whose nontrivial domains have
a non-empty intersection. This immediately covers predicates
of higher arity because sentences in the classes of these
predicates can be in the non-trivial parts of the domains of basis
automorphisms.

6 Final Remarks

Notice that all of this has a metaphysical as well as a logico-syntactic
reading. Here is how we might put the metaphysical readings into some
slogans.
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• What it means for the world to have object-property structure is that
the structure of compatibilities between states has certain kinds of
symmetries.

• Objects must be colorless because their permutations define the axes
of symmetry of the modal structure of the world.

• Objects are what states that are nontrivially affects by the most basic
kind of symmetries have in common.

• Properties are what shared among states that are mapped to each
other by the symmetries of the modal structure of the world.

• What it is for a state to include a relation is for some symmetries
map the state to states that perform the triple swap dance of relations
upon rotation through same basic symmetries.

This is all very abstract and rough. But I am optimistic that this can be
made to work.
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